

Author of this document:
- Francisco Medeiros (InovLabs)
- Hugo Melo (InovLabs)
- João Oliveira (InovLabs)
- Mick Mengucci (InovLabs)
- Nuno Charneca (InovLabs)
- David Sousa (NUCLIO)
- Kostas Soutos (Ellinogermaniki Agogi)
- Petros Stergiopoulos (Ellinogermaniki Agogi)

Artwork: Marco Martins

Partners in the project:

InovLabs (Portugal)

NUCLIO - Núcleo Interativo de Astronomia e Inovação em Educação, Portugal.

llinogermaniki Agogi - Greece

AcroFit /Perfolie Arte Circus academy, Portugal

LeDS: Learning Digital Skills through Arts and Performance 3

LeDS digital toolkit

The LeDS toolkit was developed to guide anyone interested in designing their

digitally enhanced performances, and, at the same time to guide them in their STEAM

journey to learn and apply wearables and electronics and programming for manipulation

of sound, light and movement. The goal is to potentiate artistic expression and at the

same time to increase the understanding of STEAM concepts and their applications

in an enjoyable manner.

This toolkit was designed based on the continuous exploration and feedback

from the students and teachers involved in the project..

Programmable LEDS

The micro:bit

To control LED effects or any other electronic component automatically, a

microcontroller is required. It differs from a microcomputer in that it does not include

an operating system, functioning more like the brain in the circuit. Microcontrollers

possess a small processor and sufficient memory to receive digital and analog inputs

in a circuit, process them based on the provided code, and generate outputs for the

circuit.

In LeDS we use micro:bit, a pocket-sized microcontroller, designed by Microsoft

for educational purposes. It features various sensors for input, such as light, sound,

radio and accelerometer sensor, LED displays, and connectivity options, making

it a versatile tool for teaching coding and

electronics1.

When teaching this to students it makes

it more intuitive to use biological analogies.

Don’t mistake living beings with machines.

Life is far more complex and mysterious than

anything humans have invented until now!

This is an important remark, as it teaches us

to stay humble and open to new scientific

1 More information about the micro:bit in the official website: https://microbit.org/

https://microbit.org/

4

findings and perspectives. However, only for the sake of simplifying the understanding

of microcontrollers, it is useful to compare machine functions with biological

phenomena. For instance, you can think of the microphone in the micro:bit as “its

ears”, the light sensor as “its eyes” and the accelerometer as “its vestibular system”.

All these systems receive environmental input which the micro:bit can process, when

programmed to do it, and eventually produce some kind of output. For instance, to

its screen, in the form of drawings, or to its speaker in the form of sounds. When

connected in a circuit, the micro:bit can receive and produce other kinds of input and

output from additional sensors and electronic devices/components through its digital/

analog ports.

First steps

The micro:bit can be programmed by blocks, javascript or python from the

Google Chrome Browser (for better compatibility) in the online platform makecode.

microbit.org. It is free to create an account. You can authenticate with your Google or

Microsoft accounts. This has the benefit of saving your projects in the cloud, becoming

accessible from any device.

When creating your first project a tutorial will get you introduced to the platform

and how to use it. It is highly recommended to follow it to clearly understand all

steps of the process. After that, you can start right away with your own programming

experiments. Or, you can go back to the makecode main page and follow the block

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 5

programming tutorials, namely, the “Flashing Heart”, “Name Tag”, “Smiley Buttons”,

“Dice”, etc. Every change you make to your projects will be automatically saved, and

every time you go back to the main makecode page, the projects you have created,

including the tutorials you have followed, will appear in the ”My Projects” section.

Programming with blocks is a great way to get introduced to computational

thinking and to start learning the logic behind coding in a very intuitive manner. Since

it is possible to simulate the micro:bit behavior in the platform it is not necessary to

connect the micro:bit yet when experimenting the platform for the first time. Notice that

everytime you change your program, the simulation is updated. When you are ready to

test it for real, connect the micro:bit to your computer via the USB cable and follow the

instructions upon clicking Download to transfer the program to the micro:bit. Everytime

you change your code you will have to transfer it again to the micro:bit.

Having programmed the micro:bit, you can unplug it from your computer and

plug in a portable 3V energy source which comes within the “BBC micro:bit Go” kit to

be able to move with it and still run your programs.

Setup a neopixel LED strip

Because of their great versatility, our toolkit for digitally enhanced performances

is mostly based on LEDS effects. To produce LEDS effects with the micro:bit you need

6

LEDS! However, it would not be practical to buy and connect individual LEDS and

program effects for each one individually. Instead, you can use a neopixel LED strip.

A neopixel strip is an addressable LED strip in which all LEDS are already

connected to each other and whose color can be individually programmed. To connect

and control a led strip, 3 wires are needed to:

1. connect the GND terminal at the LED strip to the GND terminal at the micro:bit;

2. connect the voltage input terminal at the LED strip to the voltage output

terminal (3V) at the micro:bit;

3. connect the data input terminal at the LED strip to a digital port terminal (e.g.,

0) at the micro:bit;

The next step is to program the

micro:bit to control the LED strip. To

do that, add the NeoPixel extension to

MakeCode: inside a MakeCode project,

click the settings wheel on the top bar

in the right corner, choose Extension from the menu and select the NeoPixel extension

from the list. After that, a new category of code blocks called “Neopixel” will appear in

your category list, from where you can choose the code blocks necessary do program

de micro:bit to control neopixel LED strips.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 7

To be able to turn a NeoPixel LED strip on or off, you must first initialize the

NeoPixel class. This means that you are telling MakeCode that a number of NeoPixels

exist and that they are Red, Green, Blue (RGB) responsive. You can do this by adding

8

a set “strip to… block” to the “on start block”. Once you have done this, you can then

call the show method on this class2.

If you plan to control more than one strip

simultaneously, you have to connect each

one to its own digital output terminal on the

micro:bit. You can then use variables to define

each strip individually referring to the micro:bit

digital output terminal the strip is connected to.

This allows you to call each strip independently.

To make a neopixel setup portable and

practical to use in performances, it’s useful

to use a micro:bit shield (more on this in the

section “Wearables” of the toolkit, page XX)

that allows both, to plug in batteries directly,

and to connect multiple LED strips easily to

the micro:bit digital output terminals.

2 Help and support on how to use NeopIxels with
the micro:bit: https://support.microbit.org/support/
solutions/articles/19000130206-using-neopixels-
with-the-micro-bit

ANNEX I - LeDS digital toolkit

https://support.microbit.org/support/solutions/articles/19000130206-using-neopixels-with-the-micro-bit
https://support.microbit.org/support/solutions/articles/19000130206-using-neopixels-with-the-micro-bit
https://support.microbit.org/support/solutions/articles/19000130206-using-neopixels-with-the-micro-bit

LeDS: Learning Digital Skills through Arts and Performance 9

Learning to program basic neopixel effects controlled by sound, light and
acceleration.

The simplest examples are the best to get us started! What follows will serve

as a skeleton and reference for you to start understanding and making your own

micro:bit controlled neopixel effects. It all depends on logic. Logic is the basis of

all programming. Would you be able to speak a new language just by adding up

new words to your vocabulary? Without the grammar you would not know how to

combine the words to make sense. It is exactly the same thing with programming

languages! It does not matter whether you are learning Java, Javascript, C, Python or

block programming. If you don’t understand logic you can’t speak to the micro:bit or

any other microcontroller. But if you do, with enough experience you will be able to

understand and reproduce any complex piece of code provided to you.

Let us start with one LED

strip only. First thing is to set up

the LED strip as in the first LED

strip example. Don’t forget to

initialize the LED strip within the

“on start” block! Now, consider a

scenario where you intend to set all

LEDs to red when the sound level

detected by the micro:bit exceeds

a prespecified threshold and to

blue otherwise. Translating this to

block language, you will want to

use the “forever”, “If… then … else” and comparison blocks to evaluate whether at

each moment it is true that the sound level detected is above a certain threshold.

This means that, if the comparison between the measured sound level and the

defined threshold returns true, that is, if the sound level is above 128, all LEDs are

set to red, and the execution of the code inside the “else” part is skipped. If the

comparison is false, that is, if the sound level is below or equal to 128 , the execution

of the show color red is skipped, and the “show color blue” block inside the “else”

part is executed.

Note: Remember that blocks can only fit other blocks of complementary shape

and that they have the color of the category to which they belong. At any moment, if

you need help with a specific block, right click on it and click help.

10

Now, you might wonder why the number 128. This number was arbitrarily chosen

to represent the midpoint of the binary precision scale of the sound level sensor,

which ranges from 0 to 255.

If we wish to set different colors for various intervals of the detected sound

level, we need to click the plus sign at the bottom of the “if...then...else” block to

add more things to evaluate. You can add as many as you wish. For the sake of

simplicity, let’s define only three: values above 200 for loud sounds, values under 55

for quiet sounds, and values in between for sounds at moderate levels. For accuracy,

it’s essential to define a variable representing the sound level measurement before

any comparison. Otherwise, if you directly compare the sound level measurement

at each step within an if block, you might end up comparing different values across

evaluations.

This code means that,

for a predefined sound level

measurement set to a value, the

“if” block begins by checking if

the value is above 200. If true, it

executes the “show color red”

block, setting all LEDs to red, and

skips the evaluation of the second

comparison and the “else” part,

restarting from the beginning. If

the first condition is false, it skips

the “show color red block” and

evaluates the second comparison.

If the second comparison is true,

it executes “show color blue” and

skips the “else” part, restarting

from the beginning. If neither

comparison is true, the “else” part is true, and the “show color yellow” block is

executed. The “i”f block then restarts from the beginning.

Because the light level sensor uses the exact same binary precision scale as

the sound level sensor, the same blocks can be used to perform the same effects.

It suffices to replace the sound level pink block by the light level block of the same

category. Lets anyway swap the “show color red” and “show color blue blocks” to

test your understanding of the logic flow.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 11

You can also leverage the accelerometer to achieve similar effects based on

the measure of the acceleration3 magnitude or in a specific direction. Simply replace

the pink block light level with an acceleration block of the same category. Play with

the acceleration strength and the three coordinates X, Y and Z. The binary precision

scale of the accelerometer ranges between -1023 and 1023.

3 https://makecode.microbit.org/reference/input/acceleration

https://nuclio.org/wp-content/uploads/2024/02/image17-ezgif.com-gif-to-mp4-converter.mp4

12

Another application of the accelerometer is to generate distinct effects based on

different movement directions. You can achieve this by setting a common threshold

value to compare the acceleration measured in each direction.

Test different thresholds values to manipulate the sensitivity of the micro:bit

accelerometer and adjust it to your needs. You can also define different threshold

values for different directions of movement.

One example of another way to use the accelerometer, developed by the Greek

students for their performance, is to compare two acceleration values, for instance

in the X and Y coordinates, respectively with two threshold values simultaneously by

using the “and” comparison block. When one of a set of such comparisons holds

true it executes a “strip show color … ” block with the intended color. This, according

to the code, will change the color to yellow, red, green, or indigo depending on the

type of movement performed, namely the ‘rotation,’ ‘fall and rebound,’ and ‘spirals’

movements.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 13

Another example that is equivalently simple uses the compass heading as input.

14

Now that you know the basics, try making your own effects using the micro:bit

sensors and experimenting with the neopixel LED strip capabilities.

Brightness and hue effects

For a brightness and hue effect controlled by sound, light or any other kind of

input data, the neopixel library offers a special block that lets you manipulate the hue,

saturation and luminosity (brightness) with precision. You just need to map your input

range to the hue range (0 to 360), or the luminosity range (1 to 100) you want to work

with. You can experiment with different numbers to see how they change the LED

strip. So, for instance, if you want the luminosity of a specific color, say red (hue = 0)

to vary with the sound level you can replace the color in the “show color” block with

the new color you have just defined:

For a hue effect change the mapping number and move the block to hue:

It’s also possible to combine both effects. We’ll leave that for you to experiment

with. Now, to go back to logic, you might want to generate the effect only when the

sound level is above a certain threshold that you can define on start. Recall everything

you have learned until now and put it all together in blocks.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 15

As before, to replicate a similar effect

for the light level, you only need to substitute

the pink sound level block with the light

level block from the same category. For

acceleration, you would also need to remap

the input based on the accelerometer’s

binary precision scale (0 to 1023).

Running LEDS effect

You can utilize sensor input data to

generate a visually appealing running LED

effect along the Neopixel strip. The colors

and brightness of the LEDs dynamically

change based on the magnitude of the input

data. The LEDs will dynamically run and

shine, their colors and brightness changing in

response to the strength of your movements.

https://nuclio.org/wp-content/uploads/2024/02/image1-ezgif.com-gif-to-mp4-converter.mp4

16

The core of the code here is the “strip set pixel color at” block inside the green

“for” loop code block. Because the index of the “for” loop ranges from 0 to 4, this

loop will set the LEDS with indexes 0, 1, 2, 3 and 4 to one of 360 colors, and a

brightness (luminosity) which varies with the index of the LED. The color of the LEDS

“force2hue” is chosen from mapping the “Force” value (between the threshold 1200

and its maximum possible value 17724) to the range of 360 possible colors.

The control block in black is meant for the micro:bit to always pick up accelerometer

events and override the current animation to create multiple strings of pixels flowing

along the strip. The movement effect is generated from within the “forever” block by

4 Since, in each movement coordinate (X, Y, Z), the acceleration value is at most 1023, its magnitude
can be calculated using the Pythagorean theorem: √(X² + Y² + Z²), resulting in a maximum magnitude
of √(3 * 1023²) ~= 1772.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 17

simply shifting the “pixels” by 1 at each 5 ms, which requires a “strip show” block to

take effect.

There are many different ways in which you can change this code to fit your

performances. For example by modifying:

- the range of colors you want you use;

- the sensitivity of the micro:bit to movement by changing the threshold to

which the “Force” value is compared in the “if” block;

- the brightness of the LEDS by changing their luminosity;

- how fast the LEDS “run” by changing the pause value;

- how many LEDS are used by changing the index range in the “for” loop;

- the triggering input sensor from acceleration to sound level or light level;

Visit the editable version at:

https://makecode.microbit.org/S62918-34908-89381-60752

Preset System

Instead of having individual micro:bits programmed for different effects, you can

program one micro:bit for multiple effects and use the micro:bit buttons to switch

between different effects during your performance. Let’s build a simple preset system

consisting of an effect triggered by light and another one by sound.

To be able to choose from between different effects with the micro:bit buttons

we need to define the effects as functions that we can call when pressing the buttons.

Can you find the “function” block? To make your code easily readable, name your

functions according to the effects they produce or the type of input they react to.

Don’t forget to keep track of the variables which have not yet been defined!

https://makecode.microbit.org/S62918-34908-89381-60752

18

The “forever” block will be useful

here to check what is the preset chosen

and execute it.

Note that no effects are generated

when the Preset value is other than 1

or 2. To choose its value, we use the

micro:bit buttons and a mathematical

trick: the remainder of division! Have

you ever wondered what is it useful

for? A wonderful application is easily

cycling through a predefined range of

values. This is super handy in many

programming situations.

To cycle the “Preset” value up we use the “on button B pressed” input block

and set the Preset value as the remainder of the division between the “Preset” current

value plus 1 and the “Preset Limit”. To cycle it down, we use the “on button A pressed”

input block, and simply replace the plus sign with a minus sign in the equation, but

use an if block to prevent negative values.

To finish, don’t forget do define the variables you are using

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 19

You can access the editable version here and change it as you see fit: https://

makecode.microbit.org/S87691-40958-94224-33779

Try building a preset

system for your own LEDs

effects. You can put in as

many functions as you wish

and cycle between them with

only two buttons as long as

you rewrite the “forever” block

according to your functions’

names and redefine the

“Preset Limit” value.

Radio Preset System

Making a radio preset system that allows you to control multiple micro:bits

wirelessly with one micro:bit will allow you to switch between the different effects you

wish the micro:bits to generate while watching the performance from the outside.

A straightforward and practical way for switching the preset wirelessly involves

breaking the preset system code earlier into two separate programs, incorporate the

radio functionality, and transfer these programs to separate micro:bits, the emitter and

the receiver micro:bit: while the emitter micro:bit will use the A and B buttons to send

the preset value over radio and that’s it, the receiver micro:bit will receive the preset

value over radio and execute the corresponding effect. Let’s look at it step by step.

https://makecode.microbit.org/S87691-40958-94224-33779
https://makecode.microbit.org/S87691-40958-94224-33779
https://nuclio.org/wp-content/uploads/2024/02/image6-ezgif.com-gif-to-mp4-converter.mp4

20

Emitter micro:bit

First, we need to program the emitter micro:bit. The “radio set group” block within

“on start” instructs the micro:bit to communicate (send and receive radio signals) with

all other micro:bits within the same group, so you always need to set the radio group,

whether the micro:bit is a receiver or an emitter. A block “radio send number” will emit

the radio signal.

Test it yourself in the following link:https://makecode.microbit.org/S54410-58041-

37683-04506

ANNEX I - LeDS digital toolkit

https://makecode.microbit.org/S54410-58041-37683-04506
https://makecode.microbit.org/S54410-58041-37683-04506

LeDS: Learning Digital Skills through Arts and Performance 21

Receiver micro:bit

Next, we need to program the receiver micro:bit to switch between effects

using signals received through radio communication. To achieve this, simply place

the receiver micro:bit within the same radio group as the emitter and instruct it to

process the received radio signal with the on radio received block, which executes

the code within its scope and makes the received signal available as a variable called

“receivedNumber”. Use this variable to set the Preset value.

Except for the “on start” block, and the fact that the “on button pressed” blocks

were replaced by the “on radio received” block, the rest of the code (“function” blocks

and “forever” block) should look exactly the same as the preset system code without

the radio functionality.

Test the whole thing here: https://makecode.microbit.org/S04955-29546-19692-

87374

https://makecode.microbit.org/S04955-29546-19692-87374
https://makecode.microbit.org/S04955-29546-19692-87374

22

LeDS toolkit effects

Based on everything we have taught about programming LED effects, our team

has developed its own Preset system with radio capabilities and various effects. Feel

free to explore it and adapt it as you see fit.

Emitter micro:bit: https://makecode.microbit.org/04838-45924-65091-31538

Receiver micro:bit: https://makecode.microbit.org/84429-78340-99227-35817

Wearables

Integrating electronics into clothing or wearables is becoming ever more common

nowadays. Wearables are accessories you can dress and use in your performance to

create the effects you have programmed. Sparkfun for instance, has compiled a set of

tutorials available online for anyone wanting to develop wearable electronics.

Everything you have learned until now can be integrated into wearables. This is a

fun part of the process as you will have to choose the right materials and tools for your

specific case, as well as to learn a whole new world of techniques, and competencies,

such as soldering, gluing, sewing, wiring, etc. Stay open to ideas that bring you out of

your comfort zone and push you to learn new things.

List of materials and tools

The LeDS wearable costumes were developed and designed with and for the

students to use in their performances. For acrobatics however, as in the case of the

Perfolie Arte students’ performance, wearables are commonly subject to a great deal

of mechanical stress when performers execute for instance aerials, floor movements

or climb ropes, etc. So make sure you select the most suitable electronic components

and materials for your specific case.

The costumes designed for the LeDS toolkit consist of the following components

and materials:

- Lycra suit

- AAA Batteries or Li-Po batteries

- LED strip

- Micro:bit microcontroller

- Micro:bit shield, for holding the batteries and connecting the LED strips

ANNEX I - LeDS digital toolkit

https://makecode.microbit.org/04838-45924-65091-31538
https://makecode.microbit.org/84429-78340-99227-35817
https://learn.sparkfun.com/tutorials/tags/wearables?page=all
https://learn.sparkfun.com/tutorials/tags/wearables?page=all

LeDS: Learning Digital Skills through Arts and Performance 23

- gaffer tape and grosgrain strip (portuguese prototype), or a light-colored fabric

strip (greek prototype) for holding the led strips.

- wiring cable

Tools:

- sewing line and needle (or sewing machine)

- soldering iron and solder

Power consumption and Batteries

According to NeoPixel — BBC micro:bit MicroPython 1.1.1 documentation the

maximum number of neopixels supplied directly from the 3V pin of the micro:bit should

be no more than 8. However, in practice, it was demonstrated that it is feasible to draw

significantly more power than the micro:bit’s internal regulator provides, at least for a

brief duration, without causing harm to the micro:bit. The Adafruit NeoPixel Überguide

(Powering NeoPixels | Adafruit NeoPixel Überguide) recommends considering 20mA

per LED for most applications. For the micro:bit board itself one should reserve

roughly 30mA. Considering one micro:bit and 50 neopixel LEDs we can estimate the

total current consumption to be 1030 mA, roughly 1A.

A typical 3.7V LiPo battery with 2000mAh capacity would supply the costumes

for about 2 hours. 3 AAA batteries can yield a similar result. Both options allow for

recharging but AAA cells can be directly replaced by standard AAA alkaline batteries

widely. Using standard AAA batteries has advantages for stage costumes as they

are readily available from specialty electronic stores as well as supermarkets or

convenience stores. The ring:bit shield for micro:bit allows for the use of standard

AAA batteries.

Putting everything together

A simple example of how to create a LeDS wearable circuit is to connect each

strip input terminal directly to a digital terminal at the micro:bit. All strips’ VCC and

GND terminals must connect directly to 3V and GND terminals at the micro:bit. No

micro:bit shield is necessary in this simple case, as a Li-Po battery can connect

directly to the micro:bit. In this case it would be necessary to solder the LED strips’

wires directly to the micro:bit board. An alternative to this, is to use a micro:bit shield,

such as the ring:bit shield, for holding AAA batteries, and connecting the LED strips

(without having to solder them).

https://microbit-micropython.readthedocs.io/en/latest/neopixel.html
https://learn.adafruit.com/adafruit-neopixel-uberguide/powering-neopixels
https://www.elecfreaks.com/ring-bit-v2-for-micro-bit.html
https://www.elecfreaks.com/ring-bit-v2-for-micro-bit.html

24

The costumes developed in Portugal are made of lycra fabric which is highly

flexible but not suitable for sewing or gluing the LEDs to it. To allow the LED flexible

strip to be attached, grosgrain strips were previously sewn along the arms, torso, and

legs of the lycra suit. Over the grosgrain strips the flexible LED strips were fixed in

place with hot glue and protected along the way with Gaffer Tape (Utility Duct Tape).

Another way to make the costumes, developed by the Greek team, is to use

a special fabric strip and attach it to the costumes with the help of a special seam.

The fabric chosen was light-coloured with a thin texture so that the light from the

LEDs could pass through it. Two 2 cm thick strips of fabric were cut from it for each

costume. The strips were then sewn left and right along the torso and limbs, (legs and

arms).

The LED strips attached to the suits were chosen to tolerate high traction forces

and torsion, specifically, our kit used the POMORONI 5m Flexible Addressable RGB

LED Wire (a.k.a. NeoPixel, WS2812B, SK6812). Regardless of the ones you choose,

LED strips should be protected to avoid breaking the contact lines arriving or departing

from each single LED. This can be achieved using hot glue to fix in place and protect

each LED along the LED strip from extreme forces.

All the electronics, including the power source and the wire connections to power

up and control the LED strips, were included in small lycra pockets located below the

neck in the upper chest and specially designed to not interfere with the movements

of the performers.

ANNEX I - LeDS digital toolkit

https://shop.pimoroni.com/products/5m-flexible-rgb-led-wire-50-rgb-leds-aka-neopixel-ws2812-sk6812?variant=40384556171347
https://shop.pimoroni.com/products/5m-flexible-rgb-led-wire-50-rgb-leds-aka-neopixel-ws2812-sk6812?variant=40384556171347

LeDS: Learning Digital Skills through Arts and Performance 25

Wiring diagram. No micro:bit shield is necessary in this simple case. A Li-Po battery is connected
directly to the micro:bit. Each strip input terminal connects directly to a digital terminal at the micro:bit.
All strips’ VCC and GND terminals connect directly to 3V and GND terminals at the micro:bit.

26

The costume prototype developed in Portugal. The costume prototype developed in Greece.

Having put everything together, it is worth mentioning that even though the

electronic components were chosen and tested to resist a significant amount of

mechanical stress, some costumes failed to go through a complete rehearsal and

performance and had to be repaired before the next one. Even though our method

is good enough for small presentations and performances in schools (when they do

not require a great deal of mechanical stress), it should be mentioned that further

improvements are necessary to make the costumes suitable for any use case.

After testing the suits some LEDs may fail. This is due to the amount of mechanical

stress applied to the suits during rehearsals or performances. Make sure you choose

resistant LED strips to attach to your suits if you think your performance may damage

the LED strips.

ANNEX I - LeDS digital toolkit

LeDS: Learning Digital Skills through Arts and Performance 27

LeDS toolkit final remarks

You’ve made it this far! Now, equipped with all the cool stuff you’ve picked up,

you’re ready to dive into creating awesome effects for your performances and, most

importantly, to spread the knowledge by teaching others.

	_fr2qsxpj8jnr
	_ewazrjnqj8bl
	_zaqlxpoxpsa9
	_7noom2oesly0
	_oig40ecu4iva
	_sbrfsi7keymo
	_2pkv9zw0lpns
	_skoe3j66atn3
	_92oxetrtslrp
	_rddlwg1beeyw
	_ti129ocvwelg
	_u48vm1ndveeg
	_sanaq9p5m3us
	_bzqlit225yg
	_my4lun6x1fe3
	_etl12je6fvxm
	_8ia3gxlmebk2

